These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Acetate represents a major product of heptanoate and octanoate beta-oxidation in hepatocytes isolated from neonatal piglets. Author: Lin X, Adams SH, Odle J. Journal: Biochem J; 1996 Aug 15; 318 ( Pt 1)(Pt 1):235-40. PubMed ID: 8761477. Abstract: An experiment was conducted to explore the nature of the radiolabel distribution in acid-soluble products (ASPs) resulting from the oxidation of [1-14C]C7:0 or C8:0 by isolated piglet hepatocytes. The differences between odd and even chain-length and the impacts of valproate and malonate upon the rate of beta-oxidation and ASP characteristics were tested. A minor amount of fatty acid carboxyl carbon (< or = 10% of organic acids identified by radio-HPLC) accumulated in ketone bodies regardless of chain-length or inhibitor used. In all cases, acetate represented the major reservoir of carboxyl carbon, accounting for 60-70% of radiolabel in identified organic acids. Cells given [1-14C]C7:0 accumulated 85% more carboxyl carbon in Krebs cycle intermediates when compared with C8:0, while accumulation in acetate was unaffected. The results are consistent with the hypothesis that anaplerosis from odd-carbon fatty acids affects the oxidative fate of fatty acid carbon. The piglet appears unique in that non-ketogenic routes of fatty acid carbon flow (i.e. acetogenesis) predominate in the liver of this species.[Abstract] [Full Text] [Related] [New Search]