These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Improving the quality of NMR and crystallographic protein structures by means of a conformational database potential derived from structure databases. Author: Kuszewski J, Gronenborn AM, Clore GM. Journal: Protein Sci; 1996 Jun; 5(6):1067-80. PubMed ID: 8762138. Abstract: A new conformational database potential involving dihedral angle relationships in databases of high-resolution highly refined protein crystal structures is presented as a method for improving the quality of structures generated from NMR data. The rationale for this procedure is based on the observation that uncertainties in the description of the nonbonded contacts present a key limiting factor in the attainable accuracy of protein NMR structures and that the nonbonded interaction terms presently used have poor discriminatory power between high- and low-probability local conformations. The idea behind the conformational database potential is to restrict sampling during simulated annealing refinement to conformations that are likely to be energetically possible by effectively limiting the choices of dihedral angles to those that are known to be physically realizable. In this manner, the variability in the structures produced by this method is primarily a function of the experimental restraints, rather than an artifact of a poor nonbonded interaction model. We tested this approach with the experimental NMR data (comprising an average of about 30 restraints per residue and consisting of interproton distances, torsion angles, 3JHN alpha coupling constants, and 13C chemical shifts) used previously to calculate the solution structure of reduced human thioredoxin (Qin J, Clore GM, Gronenborn AM, 1994, Structure 2:503-522). Incorporation of the conformational database potential into the target function used for refinement (which also includes terms for the experimental restraints, covalent geometry, and nonbonded interactions in the form of either a repulsive, repulsive-attractive, or 6-12 Lennard-Jones potential) results in a significant improvement in various quantitative measures of quality (Ramachandran plot, side-chain torsion angles, overall packing). This is achieved without compromising the agreement with the experimental restraints and the deviations from idealized covalent geometry that remain within experimental error, and the agreement between calculated and observed 1H chemical shifts that provides an independent NMR parameter of accuracy. The method is equally applicable to crystallographic refinement, and should be particular useful during the early stages of either an NMR or crystallographic structure determination and in cases where relatively few experimental restraints can be derived from the measured data (due, for example, to broad lines in the NMR spectra or to poorly diffracting crystals).[Abstract] [Full Text] [Related] [New Search]