These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dissociation of colonic apical Na/H exchange activity from bulk cytoplasmic pH. Author: Dagher PC, Behm T, Taglietta-Kohlbrecher A, Egnor RW, Charney AN. Journal: Am J Physiol; 1996 Jun; 270(6 Pt 1):C1799-806. PubMed ID: 8764164. Abstract: Intracellular acidification by stimuli rather than CO2 fails to stimulate colonic apical Na/H ex-change and Na absorption. We examined whether Na absorption could be stimulated in the absence of changes in cytoplasmic pH (pHi). Distal colon of male Sprague-Dawley rats was used for pHi measurements with 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein and for flux measurements in Ussing chambers. In 21 mM HCO3-Ringer, increasing PCO2 from 20 to 70 mmHg decreased pHi from 7.51 to 7.03 and increased net Na flux (JnetNa) from 4.2 +/- 0.4 to 6.8 +/- 0.6 mu eq.cm-2.h-1. Similar increases in JnetNa occurred in the absence of mucosal CI and in the presence of phalloidin to inhibit microfilaments or penzolamide to inhibit membrane-bound carbonic anhydrase. sohydric increases in Pco2 did not alter pHi but stimulated JnetNa from 5.1 +/- 0.6 to 7.2 +/- 0.8 mu eq.cm-2.h-1. Carbonyl cyanide m-chlorophenylhydrazone (CCCP) decreased pHi from 7.45 to 7.35 but did not stimulate JnetNa. Butyrate (25 mM) decreased pHi from 7.15 to 7.02 with recovery to baseline within 6 min; however, JnetNa increased by 2.2 mu eq.cm-2.h-1 for 60 min. We conclude that apical Na/H exchange activity is unresponsive to changes in bulk pHi and is independent of Cl/HCO3 exchange, microfilaments, and membrane-bound carbonic anhydrase. The presence of an H-tight, CO2, and butyrate-permeable subapical domain is postulated.[Abstract] [Full Text] [Related] [New Search]