These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Evidence that centrally released arginine vasopressin is involved in central pressor action of angiotensin II.
    Author: Loń S, Szczepańska-Sadowska E, Szczypaczewska M.
    Journal: Am J Physiol; 1996 Jan; 270(1 Pt 2):H167-73. PubMed ID: 8769748.
    Abstract:
    Five series of experiments were performed on conscious trained dogs to find out whether intracranially released arginine vasopressin (AVP) is involved in mediation of central cardiovascular effects of angiotensin II (ANG II). The dogs were implanted with guide tubes leading to the third cerebral ventricle (ICV) and implanted with the intra-arterial catheters. Blood pressure and heart rate were continuously monitored during intracerebroventricular administration of 1) ANG II alone (250 ng), 2) AVP alone (0.01 ng/min during 10 min), 3) ANG II together with AVP, 4) AVP together with AVP V1-receptor antagonist 1(1-mercapto-4-methylcyclohexaneacetic acid)-8-AVP [MeCAAVP, V1ANT,100 ng/min], and 5) ANG II together with V1ANT. The results revealed that 1) ANG II and AVP applied separately elicited significant, long-lasting increases of blood pressure; 2) the maximum pressor effect after ANG II and AVP applied together did not differ from that after separate application of either of these peptides, but the duration of the pressor response was significantly shorter; 3) pretreatment with V1ANT effectively prevented blood pressure increases elicited by central administration of AVP and ANG II; and 4) after blockade of V1 receptors administration of AVP resulted in a significantly delayed decrease of blood pressure below baseline. The results strongly suggest that 1) centrally released AVP mediates the pressor effect of intracerebroventricularly applied ANG II by means of V1 receptors; 2) intracerebroventricularly applied ANG II and AVP interact to activate the mechanism involved in extinction of their pressor effect; and 3) blockade of central V1 receptors uncovers the hypotensive action of centrally applied AVP.
    [Abstract] [Full Text] [Related] [New Search]