These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Insulin stimulates phospholipase D-dependent phosphatidylcholine hydrolysis, Rho translocation, de novo phospholipid synthesis, and diacylglycerol/protein kinase C signaling in L6 myotubes.
    Author: Standaert ML, Bandyopadhyay G, Zhou X, Galloway L, Farese RV.
    Journal: Endocrinology; 1996 Jul; 137(7):3014-20. PubMed ID: 8770926.
    Abstract:
    Previous studies have provided conflicting findings on whether insulin activates certain, potentially important, phospholipid signaling systems in skeletal muscle preparations. In particular, insulin effects on the hydrolysis of phosphatidylcholine (PC) and subsequent activation of protein kinase C (PKC) have not been apparent in some studies. Presently, we examined insulin effects on phospholipid signaling systems, diacylglycerol (DAG) production, and PKC translocation/activation in L6 myotubes. We found that insulin provoked rapid increases in phospholipase D (PLD)-dependent hydrolysis of PC, as evidenced by increases in choline release and phosphatidylethanol production in cells incubated in the presence of ethanol. In association with PC-PLD activation, Rho, a small G protein that is known to activate PC-PLD activation, translocated from the cytosol to the membrane fraction in response to insulin treatment. PC-PLD activation was also accompanied by increases in total DAG production and increases in the translocation of both PKC enzyme activity and DAG-sensitive PKC-alpha, -beta, -delta, and -epsilon from the cytosol to the membrane fraction. A potential role for PKC or a related protein kinase in insulin action was suggested by the finding that RO 31-8220 inhibited both PKC enzyme activity and insulin-stimulated [3H]2-deoxyglucose uptake. Our findings provide the first evidence that insulin stimulates Rho translocation and activates PC-PLD in L6 skeletal muscle cells. Moreover, this signaling system appears to lead to increases in DAG/PKC signaling, which, along with other related signaling factors, may regulate certain metabolic processes, such as glucose transport, in these cells.
    [Abstract] [Full Text] [Related] [New Search]