These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: G (VP7) serotype-dependent preferential VP7 gene selection detected in the genetic background of simian rotavirus SA11. Author: Kobayashi N, Taniguchi K, Kojima K, Urasawa T, Urasawa S. Journal: Arch Virol; 1996; 141(7):1167-76. PubMed ID: 8774679. Abstract: We previously found the preferential selection of VP7 gene from a parent rotavirus strain SA11 with G serotype 3 (G3) in the sequential passages after mixed infection of simian rotavirus SA11 and SA11-human rotavirus single-VP7 gene-substitution reassortants with G1, G2, or G4 specificity. However, it has not been known whether or not VP7 genes derived from other strains with G3 specificity (G3-VP7 gene) are preferentially selected in the genetic background of SA11. To address this question, mixed infections followed by multiple passages were performed with a reassortant SA11-L2/KU-R1 (SKR1) (which possesses VP7 gene derived from G1 human rotavirus KU and other 10 genes of SA11 origin) and one of the five G3-rotaviruses, RRV, K9, YO, AK35, and S3. After the 10th passage, selection rates of SA11-L2/KU-R1 gene 9 (G1-VP7 gene) and gene 5 (NSP1 gene) reduced considerably (0 to 20.4%) in the clones obtained from all the coinfection experiments, while all or some of other segments were preferentially selected from SKR1 depending on the pairs of coinfection. When viral growth kinetics was examined, SKR1 exhibited better growth and reached a higher titer than any G3 viruses. Although the generated reassortants with VP7 gene and NSP1 gene derived from G3 viruses showed almost similar growth kinetics to that of SKR1 during the first 20 h of replication, the titers of these reassortants were higher than that of SKR1 after 36 h postinfection. The results obtained in this study suggested that G3-VP7 gene is functionally more adapted to the genetic background of SA11.[Abstract] [Full Text] [Related] [New Search]