These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Developmentally regulated expression of surface carbohydrate residues on larval stages of the avian schistosome Trichobilharzia szidati. Author: Horák P. Journal: Folia Parasitol (Praha); 1995; 42(4):255-65. PubMed ID: 8774780. Abstract: Except other functions, surface saccharide residues on trematode larvae are supposed either to be the targets of the intermediate (molluscan) and final host immune systems, or to represent candidates for molecular mimicry. Therefore, changes in surface saccharide patterns during the development of the avian schistosome Trichobilharzia szidati were characterized. Whole parasite larval stages and their tissue sections were examined using FITC- conjugated lectins. Marked surface differences were found among larval stages (miracidia, mother sporocysts, daughter sporocysts, cercariae, schistosomula). Staining by some lectins reflected known ultrastructural changes of the outer tegument. Reaction of lectins with cercarial embryos was almost negative. In case of other developmental stages, binding of at least one member from each carbohydrate-specificity group of lectins (Man/Glc-, GlcNAc-, Gal/GalNAc- and Fuc-specific) occurred. One exception is represented by mother and daughter sporocysts which practically failed to react with Fuc-specific lectins. Besides other lectins which recognized larval surfaces, alpha-L-fucose-specific lectins (LTA, UEA-1) and (GlcNAc beta 1-->4)n-specific WGA bound very strong to certain stages. The comparison of mature intrasporocystic cercariae with those emerged from snails brought the indication that some snail glycosylated molecules adhere to the surface of schistosome larvae or that emerged cercariae express some new carbohydrate epitopes under changed environmental conditions. The result partially supports the theory of parasite mimicry/ masking strategies and immune evasion in the host.[Abstract] [Full Text] [Related] [New Search]