These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Progressive effect of endurance training on metabolic adaptations in working skeletal muscle.
    Author: Phillips SM, Green HJ, Tarnopolsky MA, Heigenhauser GJ, Grant SM.
    Journal: Am J Physiol; 1996 Feb; 270(2 Pt 1):E265-72. PubMed ID: 8779948.
    Abstract:
    We investigated the hypothesis that a program of prolonged endurance training, previously shown to decrease metabolic perturbations to acute exercise within 5 days of training, would result in greater metabolic adaptations after a longer training duration. Seven healthy male volunteers [O2 consumption = 3.52 +/- 0.20 (SE) l/min] engaged in a training program consisting of 2 h of cycle exercise at 59% of pretraining peak O2 consumption (VO2peak) 5-6 times/wk. Responses to a 90-min submaximal exercise challenge were assessed pretraining (PRE) and after 5 and 31 days of training. On the basis of biopsies obtained from the vastus lateralis muscle, it was found that, after 5 days of training, muscle lactate concentration, phosphocreatine (PCr) hydrolysis, and glycogen depletion were reduced vs. PRE (all P < 0.01). Further training (26 days) showed that, at 31 days, the reduction in PCr and the accumulation of muscle lactate was even less than at 5 days (P < 0.01). Muscle oxidative potential, estimated from the maximal activity of succinate dehydrogenase, was increased only after 31 days of training (+41%; P < 0.01). In addition, VO2peak was only increased (10%) by 31 days (P < 0.05). The results show that a period of short-term training results in many characteristic training adaptations but that these adaptations occurred before increases in mitochondrial potential. However, a further period of training resulted in further adaptations in muscle metabolism and muscle phosphorylation potential, which were linked to the increase in muscle mitochondrial capacity.
    [Abstract] [Full Text] [Related] [New Search]