These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protein kinase C-epsilon is implicated in neurite outgrowth in differentiating human neuroblastoma cells.
    Author: Fagerström S, Påhlman S, Gestblom C, Nånberg E.
    Journal: Cell Growth Differ; 1996 Jun; 7(6):775-85. PubMed ID: 8780891.
    Abstract:
    A combination of basic fibroblast growth factor (bFGF) and insulin-like growth factor-I (IGF-I) or 16 nM 12-O-tetradecanoylphorbol-13-acetate (TPA) and serum induces human SH-SY5Y neuroblastoma cells to undergo differentiation and acquire a neuronal phenotype. Nerve growth factor (NGF) added to SH-SY5Y cells stably transfected with the NGF-receptor TRK-A (SH-SY5Y/trk) induces a similar differentiated phenotype. SH-SY5Y cells express protein kinase C (PKC)-alpha, PKC-beta I, PKC-epsilon, and PKC-zeta protein, and phorbol ester- or growth factor-induced differentiation results in a sustained activation of PKC. The specific PKC inhibitor GF 109203X blocked TPA- and bFGF-IGF-I-induced neurite outgrowth in wild-type SH-SY5Y cells and NGF-induced neurite outgrowth in SH-SY5Y/trk cells. When added to differentiated cells, GF 109203X caused rapid retraction of growth cone filopodia. In TPA- and bFGF-IGF-I-treated cells, addition of GF 109203X also blocked induced expression of growth associated protein-43 and neuropeptide tyrosine while the increase in expression of these two genes was only slightly affected by the inhibitor in NGF-treated SH-SY5Y/trk cells. Thus, a portion of the NGF-induced phenotypic changes appears not to be mediated via PKC-dependent signaling. A high concentration of TPA (1.6 microM) down regulated PKC-alpha and PKC-beta I almost completely and PKC-epsilon partially in wild-type SH-SY5Y and SH-SY5Y/trk cells. Cells with down-regulated PKC-alpha and PKC-beta I after 1.6 microM TPA treatment still differentiated with growth factors. In these cells, the PKC-epsilon level was restored, and the PKC-epsilon protein was enriched in the growth cones. The 1.6 microM TPA-induced down-regulation of PKC-epsilon was counteracted by bFGF and NGF but not by platelet-derived growth factor or IGF-I. These data indicate that PKC activity is vital for neurite formation, and that the cells can differentiate under conditions when PKC-alpha and PKC-beta I are extensively down regulated. The close correlation between differentiation and presence of PKC-epsilon protein suggests an important function for this isoform during this process.
    [Abstract] [Full Text] [Related] [New Search]