These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The role of Na(+)-Ca2+ exchange in activation of excitation-contraction coupling in rat ventricular myocytes. Author: Wasserstrom JA, Vites AM. Journal: J Physiol; 1996 Jun 01; 493 ( Pt 2)(Pt 2):529-42. PubMed ID: 8782114. Abstract: 1. The purpose of this study was to determine whether mechanisms other than Ca2+ influx via L-type Ca2+ current (ICa) might contribute to activation of contraction in rat ventricular myocytes. The whole-cell voltage-clamp technique was used with normal transmembrane K+ and Na+ gradients at 34 degrees C. The sarcoplasmic reticulum (SR) was conditioned with one to three prepulses to +100 mV for 100 ms. 2. Cell shortening (delta L) increased with test voltage up to a plateau level at about +20 mV, beyond which cell shortening remained fairly constant, thus describing a sigmoidal voltage dependence. This relationship was obtained when holding potential (Vh) was either -40 or -70 mV; however, greater shortening was obtained at the more negative Vh. 3. The sigmoidal V-delta L relationship was converted to a bell shape following the magnitude of ICa when internal Cs+ was substituted for K+ and when the temperature was reduced to 22 degrees C. 4. At 34 degrees C, block of ICa with nifedipine (10 microM) decreased shortening by about 50% but did not alter the voltage dependence of delta L when Vh was either -40 or -70 mV. Addition of Ni2+ (4-5 mM) blocked all remaining contractions. 5. When cell shortening was triggered by an action potential voltage clamp, there was again about 50% of the contraction that was insensitive to nifedipine but was blocked by Ni2+. 6. Our results demonstrate that there is a significant contribution of a nifedipine-insensitive mechanism to the activation of contraction. This mechanism is likely to be reverse mode Na(+)-Ca2+ exchange since it appears to be sensitive to both voltage and Ni2+. We conclude that a contribution of reverse Na(+)-Ca2+ exchange to activation of excitation-contraction coupling occurs in rat heart at near-physiological conditions which include warm temperatures, normal transmembrane Na+ and K+ gradients and activation in response to an action potential.[Abstract] [Full Text] [Related] [New Search]