These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The function and properties of the iron-sulfur center in spinach ferredoxin: thioredoxin reductase: a new biological role for iron-sulfur clusters.
    Author: Staples CR, Ameyibor E, Fu W, Gardet-Salvi L, Stritt-Etter AL, Schürmann P, Knaff DB, Johnson MK.
    Journal: Biochemistry; 1996 Sep 03; 35(35):11425-34. PubMed ID: 8784198.
    Abstract:
    Thioredoxin reduction in chloroplasts is catalyzed by a unique class of disulfide reductases which use a [2Fe-2S]2+/+ ferredoxin as the electron donor and contain an Fe-S cluster as the sole prosthetic group in addition to the active-site disulfide. The nature, properties, and function of the Fe-S cluster in spinach ferredoxin:thioredoxin reductase (FTR) have been investigated by the combination of UV/visible absorption, variable-temperature magnetic circular dichroism (MCD), EPR, and resonance Raman (RR) spectroscopies. The results indicate the presence of an S = 0 [4Fe-4S]2+ cluster with complete cysteinyl-S coordination that cannot be reduced at potentials down to -650 mV, but can be oxidized by ferricyanide to an S = 1/2 [4Fe-4S]3+ state (g = 2.09, 2.04, 2.02). The midpoint potential for the [4Fe-4S]3+/2+ couple is estimated to be +420 mV (versus NHE). These results argue against a role for the cluster in mediating electron transport from ferredoxin (Em = -420 mV) to the active-site disulfide (Em = -230 mV, n = 2). An alternative role for the cluster in stabilizing the one-electron-reduced intermediate is suggested by parallel spectroscopic studies of a modified form of the enzyme in which one of the cysteines of the active-site dithiol has been alkylated with N-ethylmaleimide (NEM). NEM-modified FTR is paramagnetic as prepared and exhibits a slow relaxing, S = 1/2 EPR signal, g = 2.11, 2.00, 1.98, that is observable without significant broadening up to 150 K. While the relaxation properties are characteristic of a radical species, MCD, RR, and absorption studies indicate at least partial cluster oxidation to the [4Fe-4S]3+ state. Dye-mediated EPR redox titrations indicate a midpoint potential of -210 mV for the one-electron reduction to a diamagnetic state. By analogy with the properties of the ferricyanide-oxidized [4Fe-4S] cluster in Azotobacter vinelandii 7Fe ferredoxin [Hu, Z., Jollie, D., Burgess, B. K., Stephens, P. J., & Münck, E. (1994) Biochemistry 33, 14475-14485], the spectroscopic and redox properties of NEM-modified FTR are interpreted in terms of a [4Fe-4S]2+ cluster covalently attached through a cluster sulfide to a cysteine-based thiyl radical formed on one of the active-site thiols. A mechanistic scheme for FTR is proposed with similarities to that established for the well-characterized NAD(P)H-dependent flavin-containing disulfide oxidoreductases, but involving sequential one-electron redox processes with the role of the [4Fe-4S]2+ cluster being to stabilize the thiyl radical formed by the initial one-electron reduction of the active-site disulfide. The results indicate a new biological role for Fe-S clusters involving both the stabilization of a thiyl radical intermediate and cluster site-specific chemistry involving a bridging sulfide.
    [Abstract] [Full Text] [Related] [New Search]