These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Correlation of astrocytic S100 beta expression with dystrophic neurites in amyloid plaques of Alzheimer's disease.
    Author: Mrak RE, Sheng JG, Griffin WS.
    Journal: J Neuropathol Exp Neurol; 1996 Mar; 55(3):273-9. PubMed ID: 8786385.
    Abstract:
    The neurite extension factor S100 beta is overexpressed by activated astrocytes associated with amyloid-containing plaques in Alzheimer's disease, and has been implicated in dystrophic neurite formation in these plaques. This predicts (a) that the appearance of S100beta- immunoreactive (S100beta+) astrocytes precedes that of dystrophic neurites in diffuse amyloid deposits and (b) that the number of these astrocytes correlates with the degree of dystrophic neurite proliferation in neuritic plaques. As a test of the first prediction, we determined the number of S100beta+ astrocytes associated with different plaque types: diffuse non-neuritic, diffuse neuritic, dense-core neuritic, and dense-core non-neuritic. Diffuse non-neuritic plaques had small numbers of associated S100beta+ astrocytes (1.3 +/- 0.1 S100beta astrocytes per plaque [mean +/- SEM]; 80% of plaques had one or more). These astrocytes were most abundant in diffuse neuritic plaques (4.2 +/- 0.2; 100%), were somewhat less numerous in dense-core neuritic plaques (1.6 +/- 0.2; 90%), and were only rarely associated with dense-core non-neuritic plaques (0.15 +/- 0.05; 12%). As a test of the second prediction, we correlated the number of S100beta+ astrocytes per plaque with the area of beta-amyloid precursor protein (beta-APP) immunoreactivity per plaque (an index of the size of the plaques' dystrophic neurite shells) and found a significant positive correlation (r = 0.74, p < 0.001). This correlation was also evident at the tissue level: the numbers of S100beta+ astrocytes per plaque-rich field correlated with the total area beta-APP immunoreactivity in these fields (r = 0.66, p < 0.05). These correlations support the idea that astrocytic activation and S100 beta overexpression are involved in the induction and maintenance of dystrophic neurites in amyloid deposits, and support the concept of a glial cytokine-mediated cascade underlying the progression of neuropathological changes in Alzheimer's disease.
    [Abstract] [Full Text] [Related] [New Search]