These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Block of P-type Ca2+ channels by the NMDA receptor antagonist eliprodil in acutely dissociated rat Purkinje cells.
    Author: Biton B, Granger P, Depoortere H, Scatton B, Avenet P.
    Journal: Eur J Pharmacol; 1995 Dec 27; 294(1):91-100. PubMed ID: 8788420.
    Abstract:
    The effect of eliprodil on P-type Ca2+ channels was investigated in acutely dissociated rat Purkinje neurons, by using the whole-cell patch-clamp technique. Eliprodil inhibited in a reversible manner the omega-agatoxin-IVA-sensitive Ba2+ current elicited by step depolarizations from a -80 mV holding voltage (IC50 = 1.9 microM). The Ba2+ current showed steady-state inactivation (V1/2 = -61 mV) which was shifted toward more positive values when the intracellular Ca2+ buffering was increased. In these conditions, the potency of eliprodil was decreased (IC50 = 8.2 microM), suggesting a modulation by intracellular Ca2+ of the eliprodil blockade. The potency of eliprodil was not modified at more depolarized holding potentials and was not dependent on the frequency at which the step-depolarizations were applied (0-0.2 Hz) indicating a lack of voltage and use dependence of the eliprodil blockade. When eliprodil was applied in the patch-pipette at a concentration which causes full block when applied externally, the Ba2+ current amplitude was not affected and external application of eliprodil was still efficacious, indicating an extracellular location of the binding site. Analysis of the time course of recovery from Ca2+ channel blockade obtained by concomitant application of eliprodil with Cd2+, omega-agatoxin-IVA or fluspirilene, indicated that these later compounds did not interact with eliprodil, suggesting that eliprodil acts at a different site. These results demonstrate that eliprodil blocks P-type Ca2+ channels in cerebellar Purkinje neurons and suggest that this property may contribute to its neuroprotective activity.
    [Abstract] [Full Text] [Related] [New Search]