These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Post-transcriptional regulation of the Na+/Ca2+ exchanger in aging rat heart. Author: Janapati V, Wu A, Davis N, Derrico CA, Levengood J, Schummers J, Colvin RA. Journal: Mech Ageing Dev; 1995 Oct 27; 84(3):195-208. PubMed ID: 8788775. Abstract: Altered calcium homeostasis in the senescent heart appears to be the result, at least in part, of decreased Na+/Ca2+ exchange activity. To further investigate the basis of the decrease in Na+/Ca2+ exchange activity, Na+/Ca2+ exchanger gene expression in the heart was compared in 3 and 24 month old male Fischer 344 rats. Sarcolemmal vesicles prepared from left ventricle and septum showed reduced Na(+)-dependent Ca2+ uptake in 24 month old animals when compared to 3 month old animals (0.156 +/- 0.005 and 0.135 +/- 0.008 nmol Ca2+/mg/10 s; mean +/- S.E. for 3 month and 24 month old animals, respectively). Western analysis showed immunodetectable Na+/Ca2+ exchanger protein levels were decreased by 19% in 24 month old animals when compared to 3 month old animals. Poly(A+) RNA was purified from left and right ventricle and left and right atria and subjected to Northern analysis using digoxin labeled cDNA probes for the Na+/Ca2+ exchanger and actin. The Na+/Ca2+ exchanger probe labeled a 7 kb message in both ventricle and atria, while the actin probe labeled both beta-actin (2.2 kb) and alpha-actin (1.4 kb). The steady state level of expression of Na+/Ca2+ exchanger Poly(A+) RNA when normalized to beta-actin, was similar when ventricle and atria were compared. There were no observable differences in Na+/Ca2+ exchanger or alpha-actin Poly(A+) RNA steady state levels when comparing 3 and 24 month old animals. The results suggest that reduced Na+/Ca2+ exchange activity in the left ventricle of 24 month old animals was most likely the result of post-transcriptional modification of the protein that was detectable by Western analysis.[Abstract] [Full Text] [Related] [New Search]