These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ca2+ and UVB radiation have no effect on E-cadherin-mediated melanocyte-keratinocyte adhesion. Author: Nakazawa K, Nakazawa H, Bonnard M, Damour O, Collombel C. Journal: Pigment Cell Res; 1995 Oct; 8(5):255-62. PubMed ID: 8789200. Abstract: Direct cell-cell contact between melanocytes and keratinocytes has been shown to play an important role in the regulation of human melanocyte function and skin pigmentation. An important role for the calcium-dependent epithelium-specific cell adhesion molecule, E-cadherin, in melanocyte-keratinocyte adhesion was suggested previously. To further clarify regulation of E-cadherin-mediated melanocyte-keratinocyte interactions, we investigated the effects of physiological (Ca2+) and environmental (ultraviolet B [UVB] radiation) stimuli on the expression and functional activity of E-cadherin in melanocyte-keratinocyte adhesion. Expression of E-cadherin mRNA was detected by Northern blot analysis in cultured normal human melanocytes at levels similar to those in keratinocytes. Flow cytometry analysis with anti-human and anti-mouse-E-cadherin antibodies (anti-uvomorulin and ECCD-2) showed that cultured normal human keratinocytes, melanocytes, and two metastatic melanoma cell lines express E-cadherin strongly on the cell surfaces. Melanocyte adhesion, particularly to differentiating keratinocytes (cultured in 1.2 mM calcium) but not to proliferating keratinocytes or to fibroblasts, was decreased by 41.7 +/- 4.5% in the absence of 1 mM Ca2+ during the binding assay. Addition of anti-mouse-E-cadherin antibody (ECCD-1) to the binding assay inhibited the adhesion of melanocytes to differentiating keratinocytes by 88.2 +/- 1.1%, while addition of anti-P-cadherin antibody (PCD-1) had no effect. The levels of E-cadherin expression in melanocytes were not changed by the presence of calcium (1 mM) in the medium or by UVB irradiation (20 mJ/cm2) for one day before flow cytometry analysis. Moreover, these treatments had no effect on melanocyte-keratinocyte adhesion. These results demonstrate that E-cadherin is strongly involved in melanocyte adhesion to keratinocytes and suggest the implication of E-cadherin in the overall regulation of the skin pigmentary system.[Abstract] [Full Text] [Related] [New Search]