These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of ginsenoside Rb1 on rat liver phosphoproteins induced by carbon tetrachloride.
    Author: Park HJ, Park KM, Rhee MH, Song YB, Choi KJ, Lee JH, Kim SC, Park KH.
    Journal: Biol Pharm Bull; 1996 Jun; 19(6):834-8. PubMed ID: 8799482.
    Abstract:
    We investigated the effects of ginsenoside Rb1 (G-Rb1), a major saponin from Panax ginseng C. A. MEYER, on rat liver protein phosphorylation after intraperitoneal administration of CCl4 alone or together with G-Rb1. We found that 118, 63, and 34kDa proteins were prominently phosphorylated in liver homogenates prepared from CCl4-administered rats, while these protein-phosphorylations were inhibited in the homogenate prepared from the G-Rb1 plus CCl4-administration group. When inhibitors of protein kinases were exogenously added to the homogenates from either the CCl4-administered group or the G-Rb1 plus CCl4-administered group, their phosphorylations were inhibited much more by W-7, an inhibitor of Ca2+/calmodulin-dependent protein kinase (CaM-PK), than by H-7, an inhibitor of protein kinase C (C-kinase). Interestingly, only 34kDa was phosphorylated in homogenates prepared from the corn oil-, G-Rb1-, and G-Rb1 plus CCl4-administered groups by the exogenous addition of sodium fluoride (NaF), an inhibitor of glycogen synthase. Additionally, G-Rb1 inhibited the Ca(2+)-accumulation induced by CCl4 both in liver homogenates and microsomes. The above results imply that G-Rb1 inhibits the CCl4-induced protein phosphorylations by modulating CaM-PK rather than C-kinase, and that 34kDa protein may play a different biological role in cellular environment from 118 and 63kDa proteins. Therefore, a study in which G-Rb1 is employed as a modulator of critical CCl4-induced phenomena ranging from the disturbance of Ca2+ concentration to protein phosphorylation may be successfully applicable to investigate the diverse physiological functions of liver.
    [Abstract] [Full Text] [Related] [New Search]