These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Murine autosomal recessive polycystic kidney disease with multiorgan involvement induced by the cpk gene. Author: Gattone VH, MacNaughton KA, Kraybill AL. Journal: Anat Rec; 1996 Jul; 245(3):488-99. PubMed ID: 8800407. Abstract: BACKGROUND: Autosomal recessive (AR) polycystic kidney disease (PKD) is characterized in humans and mice as a rapidly progressive, collecting duct cystic disease usually leading to uremia in the neonatal or infantile period. In humans, ARPKD renal pathology can be variable in severity and is associated with the development of prominent bile duct and liver pathology. The C57BL/6J-cpk/cpk mouse model of ARPKD is the most extensively studied murine model of inherited infantile PKD; however, these mice lack extrarenal pathology. METHODS: In the present study, the cpk gene was backbreed onto CD1 mice to examine the development of cpk-induced ARPKD in this outbred mouse background. Resulting cystic offspring were examined morphologically and their serum urea nitrogen levels were assessed. RESULTS: The rapid development of PKD in CD1 mice homozygous for the cpk gene appears to be slightly more rapid but otherwise comparable to that seen in inbred C57BL/6J mice. In CD1-cpk/cpk mice, the principal renal pathological finding is collecting duct cysts, which are lined by a relatively uniform epithelium. This epithelium appears to be relatively undifferentiated based on almost total absence of intercalated cells. Proximal tubule cysts are prominent in the first postnatal week while collecting duct cysts predominate in the later stages of the disease. Extrarenal manifestations of the cpk gene are evident in the CD1 strain and include cysts of pancreatic, common bile, and major hepatic ducts. Intrahepatic bile ducts also have focal dilations. Primary (thymus) and secondary (spleen) lymphoid tissues become hypoplastic as azotemia progresses. The strain-related variability in renal and liver changes in cpk-induced ARPKD may reflect the influence of other genes (possibly modifier genes) expressed in this mouse strain. In older CD1-cpk/+ mice, renal (proximal tubular) cysts and prominent liver cysts (lined by a biliary epithelium) develop, indicating that the heterozygous state (cpk/+ genotype) causes renal and hepatic pathology. CONCLUSIONS: The cpk gene, when placed on an appropriate mouse strain background, causes multiorgan disease that more closely mimics human ARPKD than when the cpk gene is expressed on the C57BL/6J strain. A gene dose effect is present as cystic pathology is present in kidney and liver of both suckling homozygous (cpk/cpk) and old heterozygous (cpk/+) mice.[Abstract] [Full Text] [Related] [New Search]