These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Structure of unliganded HIV-1 reverse transcriptase at 2.7 A resolution: implications of conformational changes for polymerization and inhibition mechanisms. Author: Hsiou Y, Ding J, Das K, Clark AD, Hughes SH, Arnold E. Journal: Structure; 1996 Jul 15; 4(7):853-60. PubMed ID: 8805568. Abstract: BACKGROUND: HIV-1 reverse transcriptase (RT) is a major target for anti-HIV drugs. A considerable amount of information about the structure of RT is available, both unliganded and in complex with template-primer or non-nucleoside RT inhibitors (NNRTIs). But significant conformational differences in the p66 polymerase domain among the unliganded structures have complicated the interpretation of these data, leading to different proposals for the mechanisms of polymerization and inhibition. RESULTS: We report the structure of an unliganded RT at 2.7 A resolution, crystallized in space group C2 with a crystal packing similar to that of the RT-NNRTI complexes. The p66 thumb subdomain is folded into the DNA-binding cleft. Comparison of the unliganded RT structures with the DNA-bound RT and the NNRTI-bound RT structures reveals that the p66 thumb subdomain can exhibit two different upright conformations. In the DNA-bound RT, the p66 thumb subdomain adopts an upright position that can be described as resulting from a rigid-body rotation of the p66 thumb along the "thumb's knuckle' located near residues Trp239 (in strand beta 14) and Val317 (in beta 15) compared with the thumb position in the unliganded RT structure. NNRTI binding induces an additional hinge movement of the p66 thumb near the thumb's knuckle, causing the p66 thumb to adopt a configuration that is even more extended than in the DNA-bound RT structure. CONCLUSIONS: The p66 thumb subdomain is extremely flexible. NNRTI binding induces both short-range and long-range structural distortions in several domains of RT, which are expected to alter the position and conformation of the template-primer. These changes may account for the inhibition of polymerization and the alteration of the cleavage specificity of RNase H by NNRTI binding.[Abstract] [Full Text] [Related] [New Search]