These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cytostatic effect of Epstein-Barr virus latent membrane protein-1 analyzed using tetracycline-regulated expression in B cell lines. Author: Floettmann JE, Ward K, Rickinson AB, Rowe M. Journal: Virology; 1996 Sep 01; 223(1):29-40. PubMed ID: 8806537. Abstract: Tetracycline-regulated vectors were used to obtain inducible expression in stable transfected B cell lines of two Epstein-Barr virus (EBV) latent genes, LMP1 and EBNA2. The transfected genes were tightly repressed by low, nontoxic concentrations of tetracycline (< or = 1 microgram/ml) and, following removal of tetracycline, were induced to levels comparable to or up to 3x that of EBV-transformed normal lymphoblastoid cell lines. In transfected DG75 cells, induced expression of LMP1, but not of EBNA2, led to the expected upregulation of various cell surface markers, including: CD40, CD54, CD58, and HLA class I.A novel observation was that both LMP1 and EBNA2 independently caused the downregulation of surface IgM, an effect mirrored in EBV-positive Burkitt lymphoma lines undergoing phenotypic drift during the transition from latency I to latency III in which both LMP1 and EBNA2 are upregulated. Most remarkably, induced LMP1 expression almost completely inhibited cell growth for 4 to 5 days, after which the cells recovered a limited proliferative capacity. The cytostatic effect of LMP1 was observed in all three B cell lines studied: DG75, BJAB, and Akata. Further analysis showed that induction of LMP1 coincided with a reduction in the levels of c-myc, and that the cytostatic effect was due to an accumulation of cells at the G2/M phase of the cell cycle. These data suggest a novel function for the LMP1 oncogene in controlling the proliferation of EBV-infected cells by regulating progress through G2/M phase.[Abstract] [Full Text] [Related] [New Search]