These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular recognition in the bovine immunodeficiency virus Tat peptide-TAR RNA complex. Author: Ye X, Kumar RA, Patel DJ. Journal: Chem Biol; 1995 Dec; 2(12):827-40. PubMed ID: 8807816. Abstract: BACKGROUND: In lentiviruses such as human immunodeficiency virus (HIV) and bovine immunodeficiency virus (BIV), the Tat (trans-activating) protein enhances transcription of the viral RNA by complexing to the 5'-end of the transcribed mRNA, at a region known as TAR (the trans-activation response element). Identification of the determinants that account for specific molecular recognition requires a high resolution structure of the Tat peptide-TAR RNA complex. RESULTS: We report here on the structural characterization of a complex of the recognition domains of BIV Tat and TAR in aqueous solution using a combination of NMR and molecular dynamics. The 17-mer Tat peptide recognition domain folds into a beta-hairpin and penetrates in an edge-on orientation deep into a widened major groove of the 28-mer TAR RNA recognition domain in the complex. The RNA fold is defined, in part, by two uracil bulged bases; U12 has a looped-out conformation that widens the major groove and U10 forms a U.AU base triple that buttresses the RNA helix. Together, these bulged bases induce a approximately 40 degree bend between the two helical stems of the TAR RNA in the complex. A set of specific intermolecular hydrogen bonds between arginine side chains and the major-groove edge of guanine residues contributes to sequence specificity. These peptide-RNA contacts are complemented by other intermolecular hydrogen bonds and intermolecular hydrophobic packing contacts involving glycine and isoleucine side chains. CONCLUSIONS: We have identified a new structural motif for protein-RNA recognition, a beta-hairpin peptide that interacts with the RNA major groove. Specificity is associated with formation of a novel RNA structural motif, a U.AU base triple, which facilitates hydrogen bonding of an arginine residue to a guanine and to a backbone phosphate. These results should facilitate the design of inhibitors that can disrupt HIV Tat-TAR association.[Abstract] [Full Text] [Related] [New Search]