These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Differential effects of trilostane and cyanoketone on the 3 beta-hydroxysteroid dehydrogenase-isomerase reactions in androgen and 16-androstene biosynthetic pathways in the pig testis. Author: Cooke GM. Journal: J Steroid Biochem Mol Biol; 1996 Apr; 58(1):95-101. PubMed ID: 8809191. Abstract: 3 beta-Hydroxysteroid dehydrogenase-isomerase (3 beta-HSD-I) activity in the pig testis is responsible for the conversion of dehydroepiandrosterone (DHA) to 4-androstenedione and also for the conversion of 5,16-androstadien-3 beta-ol (andien-beta) to 4, 16-androstadien-3-one (dienone). Therefore, 3 beta-HSD-I plays an essential role in the biosynthesis of hormonally and pheromonally active steroids. Previous studies from this laboratory have suggested that the 3 beta-HSD-I reactions in the androgen and 16-androstene biosynthetic pathways may be catalysed by different enzymes with selective substrate specificities [3, 4]. The aim of the present studies was to investigate the reactions further by examining the effects of two classical steroidal inhibitors of 3 beta-HSD-I, trilostane (WIN 24540) and cyanoketone (WIN 19578), on the kinetic parameters of the 3 beta-HSD-I reactions in immature (< 3 weeks) pig testis microsomes. In kinetic analyses of the conversion of DHA to 4-androstenedione, both trilostane and cyanoketone caused increases in the Km(app) for DHA which at the highest concentration used, were 15-fold the control Km(app) of 1.4 mumol/l. No effect on the Vmax(app) (6.55 +/- 0.74 nmol/h/mg protein) was observed, demonstrating that competitive inhibition was evident. Slope and intercept replots confirmed the competitive nature of the inhibition and Ki(app) values of 0.16 mumol/l for trilostane and 0.20 mumol/l for cyanoketone were respectively 9 and 7-fold lower than the Km(app) value. In contrast, trilostane and cyanoketone had no effect on the Km(app) for andien-beta (0.26 mumol/l). The Vmax(app) (1.12 nmol/h/mg protein) was decreased by 40-50% only by trilostane at the highest concentration used, demonstrating a very low affinity for the andien-beta active site. Ki(app) values for trilostane and cyanoketone, obtained from slope and intercept replots were, respectively 1.1 and 1.6 mumol/l, which were 4 and 6-fold greater than the Km(app) for andien-beta. Therefore, trilostane and cyanoketone were powerful competitive inhibitors of the conversion of DHA to 4-androstenedione but were weak non-competitive inhibitors of the conversion of andien-beta to dienone. The selective effects of trilostane and cyanoketone on the 3 beta-HSD-Is involved in the androgen and 16-androstene biosynthetic pathways strongly suggest that the reactions are catalysed by separate enzymes, or at least separate, non-interacting active sites on a single enzyme.[Abstract] [Full Text] [Related] [New Search]