These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Activity-dependent slowing of conduction velocity provides a method for identifying different functional classes of C-fibre in the rat saphenous nerve.
    Author: Gee MD, Lynn B, Cotsell B.
    Journal: Neuroscience; 1996 Aug; 73(3):667-75. PubMed ID: 8809788.
    Abstract:
    Repetitive firing of nerve fibres results in the slowing of their conduction velocity. The extent of conduction velocity slowing throughout a standard electrical stimulus (20 s, 20 Hz, 2 x electrical threshold) was examined in identified C-fibres dissected from the saphenous nerve of anaesthetized rats. The aim of this study was to establish whether the different functional classes of C-fibre could be identified on the basis of their activity-dependent slowing of conduction velocity. Following 20 s of stimulation at 20 Hz, nociceptive C-fibres showed a significantly greater slowing of conduction velocity (mean +/- S.E.; polymodal and heat nociceptors = 29.2% +/- 0.7, n = 53; mechanical nociceptors = 27.7% +/- 1.7, n =13) than cold thermoreceptive fibres (10.8% +/- 0.6, n = 10), mechanoreceptors (14.4% +/- 0.8, n = 17) and spontaneously active sympathetic efferent units (14.9% +/- 0.8, n = 24). The degree of conduction velocity slowing shown by a unit was not correlated with its resting conduction velocity. There was little overlap of the degree of conduction velocity slowing between the nociceptive and non-nociceptive fibres. Also, there was little overlap of conduction velocity slowing between the mechanoreceptors and the cold units, particularly after just 6 s of stimulation at 20 Hz. Units for which no receptive field to mechanical or thermal stimuli could be found showed a bimodal distribution of conduction velocity slowing. In the saphenous nerve, such inexcitable units will be of three main types--sympathetic efferent units, "sleeping" or "silent" nociceptors and non-cutaneous afferent fibres. Those inexcitable units slowing in conduction velocity by greater than 20% showed a similar distribution to the polymodal nociceptors and those inexcitable units slowing by less than 20% showed a similar distribution to the spontaneously active sympathetic units. Twenty-three of the 61 units without mechanical or thermal receptive fields were investigated using electrical skin stimulation and topical application of 5 or 10% mustard oil. Afferent fields could not be found for any of the nine units that slowed in conduction velocity by less than 20%. Afferent fields were detected for 11 of the remaining 14 insensitive units, which all showed a greater than 20% slowing from resting conduction velocity. Therefore, one can distinguish nociceptive and non-nociceptive afferent fibres simply by looking at the axonal property of activity-dependent slowing of conduction velocity. Moreover, it is possible to use this axonal property to separate the two classes of non-nociceptive afferent C-fibre (i.e. mechanoreceptors and cold thermoreceptors). In addition, one can also use this parameter to differentiate between the afferent and non-afferent populations of inexcitable C-fibres. The ability to identify a particular fibre type on the basis of an axonal property provides a useful tool for the functional classification of fibres in experiments where axons are separated from their terminals.
    [Abstract] [Full Text] [Related] [New Search]