These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Covalent attachment of FAD derivatives to a fusion protein consisting of 6-hydroxy-D-nicotine oxidase and a mitochondrial presequence. Folding, enzyme activity, and import of the modified protein into yeast mitochondria. Author: Stoltz M, Rassow J, Bückmann AF, Brandsch R. Journal: J Biol Chem; 1996 Oct 11; 271(41):25208-12. PubMed ID: 8810280. Abstract: Autoflavinylation of 6-hydroxy-D-nicotine oxidase (6-HDNO) was successfully employed to modify the protein covalently with FAD derivatives. The model compounds N6-(2-aminoethyl)-FAD and N6-(6-carboxyhexyl)-FAD were spontaneously bound to a fusion protein consisting of the mitochondrial targeting sequence of Neurospora crassa F0-ATPase subunit 9 (Su9) attached to 6-HDNO. When translated in the rabbit reticulocyte lysate, Su9-6-HDNO was in the trypsin-sensitive apoenzyme form; when translated in the presence of flavins it adopted a trypsin-resistant conformation characteristic of the 6-HDNO holoenzyme. With flavin derivatives, Su9-6-HDNO exhibited approximately 50% of the 6-HDNO activity observed with FAD. The covalently modified Su9-6-HDNO was imported into Saccharomyces cerevisiae mitochondria with an efficiency equal to that of the apoenzyme. Apparently the increase in size and charge of the FAD moiety did not hamper translocation across the mitochondrial membranes. Yeast mutant ssc1-2 mitochondria deficient in mtHsp70 unfoldase activity imported the flavinylated Su9-6-HDNO protein. In mutant ssc1-3 mitochondria deficient in both mtHsp70 unfoldase and translocase activity Su9-6-HDNO was trapped as translocation intermediate; the Su9 presequence was passed to the matrix where it was proteolytically cleaved by the mitochondrial processing peptidase; (MPP); the translocation-arrested 6-HDNO moiety adopted a trypsin-sensitive conformation. Our results indicate that unfolding of the FAD-stabilized flavin-binding domain of 6-HDNO in passage through the mitochondrial general insertion pore does not require the activity of mtHsp70.[Abstract] [Full Text] [Related] [New Search]