These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evidence that the NH2-terminus of substance P modulates N-methyl-D-aspartate-induced activity by an action involving sigma receptors. Author: Hornfeldt CS, Kitto KF, Larson AA. Journal: Eur J Pharmacol; 1996 Jun 13; 306(1-3):15-22. PubMed ID: 8813610. Abstract: Behaviors induced in mice by intrathecal injections of either N-methyl-D-aspartate (NMDA) or kainic acid are modulated by NH2-terminal fragments of substance P, such as substance P-(1-7). The action of substance P-(1-7) on kainic acid depends on sigma receptor activity. The present study was designed to test the hypothesis that sigma receptor activity is also necessary for modulation of NMDA by substance P-(1-7). Intrathecal injection of mice with NMDA results in a brief burst of biting and scratching behaviors which decrease in intensity when NMDA is injected repeatedly at 2 min intervals. Pretreatment with 1,3-di-O-tolylguanidine (DTG), a ligand at both sigma 1 and sigma 2 sites, converted NMDA-induced desensitization to sensitization, thereby enhancing tonic NMDA receptor activity. Although haloperidol (30 min) alone was without effect, the potentiation of NMDA-induced activity by DTG was abolished by haloperidol but unaffected by an equimolar dose of either spiperone or thiothixine, two dopamine receptor antagonists. When mice received substance P-(1-7), NMDA-induced behaviors were initially inhibited but then potentiated. Pretreatment with haloperidol prevented both inhibitory and potentiative effects of substance P-(1-7) whereas thiothixine did not, suggesting inhibitory as well as potentiative modulation of NMDA by sigma receptor activity. Endogenous sigma 1 receptor activity may enhance NMDA receptor activity as a treatment regimen that down-regulates sigma 1 binding also inhibited responses to NMDA. In contrast, pretreatment with haloperidol just 5 min prior to challenge, which blocks both sigma 1 and sigma 2 receptor activity, increased responses to NMDA suggesting an inhibitory effect of sigma 2 receptor activity. In summary, modulation of NMDA by substance P-(1-7) appears to depend on activity at sigma sites as substance P-(1-7) mimicked the potentiative effects of DTG, while haloperidol inhibited the effects of both DTG and substance P-(1-7).[Abstract] [Full Text] [Related] [New Search]