These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Differential regulation of evoked peptide release by voltage-sensitive calcium channels in rat sensory neurons.
    Author: Evans AR, Nicol GD, Vasko MR.
    Journal: Brain Res; 1996 Mar 18; 712(2):265-73. PubMed ID: 8814901.
    Abstract:
    To determine whether the sensitizing action of prostaglandins on sensory neurons are due to modulation of voltage-sensitive calcium channels (VSCC) we examined the effects of inhibiting these channels on PGE2-induced enhancement of evoked peptide release from isolated dorsal root ganglion neurons. The inhibitory effects of the VSCC blockers on stimulated release were dependent upon the type of chemical agent used to evoke the release. Bradykinin-stimulated release of immunoreactive substance P (iSP) and calcitonin gene-related peptide (iCGRP) was attenuated by the N-type VSCC blocker, omega-conotoxin GVIA (100 nM), but was unaffected by blockade of L-type (1 microM nifedipine) or P-type (200 nM omega-agatoxin IVA) VSCC. In contrast, potassium-stimulated release of peptides was inhibited by nifedipine, but not by omega-conotoxin GVIA or omega-agatoxin IVA. None of the VSCC blockers tested attenuated capsaicin-stimulated release of iSP and iCGRP. The combination of 1 microM nifedipine and 100 nM omega-conotoxin GVIA reduced the whole cell calcium current 89% +/- 1.7%. Administration of 100 nM PGE2 potentiated bradykinin- and capsaicin-evoked peptide release by 2-3-fold. Neither nifedipine nor omega-conotoxin GVIA attenuated the PGE2-mediated potentiation of bradykinin-evoked release, and neither omega-conotoxin GVIA nor omega-agatoxin IVA blocked the potentiation of capsaicin-evoked release induced by PGE2. These results indicate that the sensitizing actions of PGE2 as measured by enhanced peptide release, are not mediated by L-, N-, or P-type VSCC.
    [Abstract] [Full Text] [Related] [New Search]