These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Subcellular localization of spinach cysteine synthase isoforms and regulation of their gene expression by nitrogen and sulfur.
    Author: Takahashi H, Saito K.
    Journal: Plant Physiol; 1996 Sep; 112(1):273-80. PubMed ID: 8819326.
    Abstract:
    Subcellular localization and regulation of the spinach (Spinacia oleracea) cysteine synthase (O-acetyl-L-serine[thiol]-lyase, EC 4.2.99.8) isoforms (CysA, CysB, and CysC) were determined in transgenic tobacco (Nicotiana tabacum) and in spinach cell cultures. The 5' regions of CysB and CysC encoding the chloroplastic (CysB-TP) and the putative mitochondrial (CysC-TP) transit peptide (TP) sequences were fused to a bacterial beta-glucuronidase gene (gus) and expressed in tobacco under the control of the cauliflower mosaic virus 35S promoter. Subcellular fractionation of transgenic tobacco showed transportation of beta-glucuronidase proteins to chloroplasts by CysB-TP and to mitochondria by CysC-TP, respectively, indicating that both presequences were sufficient to act specifically as chloroplastic and mitochondrial TPs in vivo. The mRNA expression patterns of CysA (cytoplasmic form), CysB, and CysC genes under nitrogen- and sulfur-starved conditions were characterized in spinach cell cultures. In sulfur-starved cells, only slight differences (approximately 1.2- to 1.5-fold) in the mRNA levels of CysA and CysB were observed during the short-term (0-24 h) cultivation periods compared with cells grown in Murashige-Skoog medium. However, under nitrogen and nitrogen/sulfur double-deficient stress conditions, mRNA levels of CysC increased up to 500% of the original level within 72 h.
    [Abstract] [Full Text] [Related] [New Search]