These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of TEM-2 beta-lactamase from Escherichia coli by clavulanic acid: observation of intermediates by electrospray ionization mass spectrometry. Author: Brown RP, Aplin RT, Schofield CJ. Journal: Biochemistry; 1996 Sep 24; 35(38):12421-32. PubMed ID: 8823177. Abstract: Clavulanic acid, the therapeutically important inhibitor of beta-lactamases containing a nucleophilic serine residue at their active sites, inhibits Escherichia coli TEM-2 beta-lactamase via a complex mechanism. Electrospray ionization mass spectrometry (ESIMS) studies revealed that a minimum of four different modified proteins are formed upon incubation of clavulanate with the TEM-2 enzyme. These exhibit mass increments relative to the unmodified TEM-2 beta-lactamase of 52, 70, 88, and 155 Da. Time course studies implied that no long-lived forms of clavulanate-inhibited TEM-2 beta-lactamase retain the carbons of the oxazolidine ring of clavulanate. The absence of a 199 Da increment to unmodified TEM-2 suggests rapid decarboxylation of clavulanate upon binding to the enzyme. Proteolytic digestions of purified forms of clavulanate inhibited TEM-2 beta-lactamase followed by analyses using high-performance liquid chromatography coupled to ESIMS (HPLC-ESIMS) and chemical sequencing were used to provide positional information on the modifications to the enzyme. Increments of 70 and 80 Da increments were shown to be located in a peptide containing Ser-70. A further 70 Da mass increment, assigned as a beta-linked acrylate, was localized to a peptide containing Ser-130. A mechanistic scheme for the reaction of clavulanate with TEM-2 beta-lactamase is proposed in which acylation at Ser-70 and subsequent decarboxylation is followed either by cross-linking with Ser-130 to form a vinyl ether or by reformation of unmodified enzyme via a Ser-70 linked (hydrated) aldehyde. Purified cross-linked vinyl ether was observed to slowly convert under acidic conditions to a Ser-70 linked (hydrated) aldehyde with concomitant conversion of Ser-130 to a dehydroalanyl residue.[Abstract] [Full Text] [Related] [New Search]