These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Propranolol hydroxylation and N-desisopropylation by cytochrome P4502D6: studies using the yeast-expressed enzyme and NADPH/O2 and cumene hydroperoxide-supported reactions.
    Author: Bichara N, Ching MS, Blake CL, Ghabrial H, Smallwood RA.
    Journal: Drug Metab Dispos; 1996 Jan; 24(1):112-8. PubMed ID: 8825198.
    Abstract:
    We have studied the enantioselectivity and regioselectivity of ring-hydroxylation and N-desisopropylation of R(+)- and S(-)-propranolol in microsomes from yeast expressing cytochrome P4502D6 (CYP2D6), using both NADPH and molecular oxygen (NADPH/O2) and cumene hydroperoxide-supported reactions. With NADPH/O2-supported reactions, CYP2D6 catalyzed 4- and 5-ring-hydroxylation, as well as N-desisopropylation of propranolol, although Vmax was considerably greater for ring-hydroxylation, compared with N-desisopropylation. The R/S ratios for KM and Vmax were less than unity for all three pathways. In contrast, using cumene hydroperoxide-supported reactions, CYP2D6 catalyzed 4- and 5-ring-hydroxylation, and there was negligible N-desisopropylation of propranolol. The R/S ratio for KM was less than unity, but the R/S ratio for Vmax was close to unity. The cumyl group of cumene hydroperoxide did not seem to be a selective inhibitor of N-desisopropylation, because i) cumyl alcohol (a nonalkylhydroperoxide analog of cumene hydroperoxide) did not inhibit N-desisopropylation in NADPH/O2-supported reactions, and ii) the use of t-butyl hydroperoxide (a noncumyl alkylhydroperoxide) to support CYP2D6 catalysis resulted in ring-hydroxylation, but not N-desisopropylation. At a propranolol concentration near KM, quinidine inhibited both ring-hydroxylation and N-desisopropylation in an equipotent manner in NADPH/O2-supported reactions. However, in cumene hydroperoxide-supported reactions, the IC50 of inhibition of ring-hydroxylation by quinidine was an order of magnitude less potent than in NADPH/O2-supported reactions. Our study shows that recombinant CYP2D6 cannot only catalyze 4- and 5-ring-hydroxylation of propranolol, but also N-desisopropylation. The lack of propranolol N-desisopropylation observed in cumene hydroperoxide-supported reactions highlights the need for caution when using alkyhydroperoxides to study CYP2D6 catalysis.
    [Abstract] [Full Text] [Related] [New Search]