These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evidence for cGMP mediation of skeletal muscle arteriolar dilation to lactate. Author: Chen YL, Wolin MS, Messina EJ. Journal: J Appl Physiol (1985); 1996 Jul; 81(1):349-54. PubMed ID: 8828684. Abstract: In this study we tested the hypothesis that lactate, independent of changes in pH, can affect skeletal muscle blood flow through arteriolar dilation that may be mediated by guanosine 3',5'-cyclic monophosphate. Isolated, cannulated, and pressurized first-order rat cremaster skeletal muscle arterioles were studied in a chamber containing Krebs-bicarbonate buffer under no-flow conditions. At pH 7.4 and PO2 of 65 Torr, neutralized lactic acid (lactate) and pyruvic acid (pyruvate) caused arteriolar dilation over the 1-10 mM concentration range. This response to lactate was not altered by 10(-5) M indomethacin, 10(-4) M NG-nitro-L-arginine, or removal of the endothelium. However, responses to 1 and 3 mM pyruvate were significantly inhibited by 100% by endothelium removal, and the response to 10 mM pyruvate was inhibited by 71%. The relaxation of endothelium-denuded arterioles to lactate was inhibited by 10 microM methylene blue, 10 microM LY-83583, hypoxia (PO2 7-10 Torr), and diphenyliodonium, an inhibitor of superoxide-producing flavo-protein enzymes. In contrast, arteriolar dilation to the acidification of the Krebs buffer to pH 7.15, produced by increasing the CO2 concentration of the gas mixture from 5 to 10%, was not inhibited by methylene blue. These results are consistent with lactate-induced skeletal muscle arteriolar dilation being dependent on H2O2-mediated activation of vascular smooth muscle guanylate cyclase and independent of endothelium-derived mediators.[Abstract] [Full Text] [Related] [New Search]