These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Measurement of lung mechanics at different lung volumes and esophageal levels in normal subjects: effect of posture change.
    Author: Baydur A, Sassoon CS, Carlson M.
    Journal: Lung; 1996; 174(3):139-51. PubMed ID: 8830190.
    Abstract:
    Lung elastance and resistance increase in the supine posture. To evaluate the effects of change in posture on regional lung mechanics at different lung volumes, lung elastance and resistance were measured at graded volume subdivisions and three esophageal levels at seated and supine body positions, using the esophageal balloon technique. Volumes were adjusted to be the same in both postures. In general, lung elastance (both static and dynamic) tended to be higher in supine posture and uniform at all lung volumes, except at 80% vital capacity, where it increased sharply. The ratio of dynamic to static lung elastance was slightly higher at the cephalad esophageal level, where regional flow rates and relative volume expansion are lower. Lung resistance varied inversely with lung volume but was higher at corresponding volume subdivisions in the supine posture. It decreased at more cephalad esophageal levels, where volume expansion and flow are less. Thus, the increase in regional flow at low volume subdivisions (most marked in the supine position) also contributed to higher lung resistance at these volumes. These findings are explained on the basis of a combination of Newtonian physics as well as nonlinear viscoelastic properties of the lung as applied to regional flow and volume expansion.
    [Abstract] [Full Text] [Related] [New Search]