These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: 2',3'-dideoxy-beta-L-5-fluorocytidine inhibits duck hepatitis B virus reverse transcription and suppresses viral DNA synthesis in hepatocytes, both in vitro and in vivo.
    Author: Zoulim F, Dannaoui E, Borel C, Hantz O, Lin TS, Liu SH, Trépo C, Cheng YC.
    Journal: Antimicrob Agents Chemother; 1996 Feb; 40(2):448-53. PubMed ID: 8834896.
    Abstract:
    beta-L-Nucleoside analogs represent a new class of potent antiviral agents with low cytotoxicity which provide new hope in the therapy of chronic hepatitis B virus (HBV) infections. We evaluated the anti-HBV activity of 2',3'-dideoxy-beta-L-5-fluorocytidine (beta-L-F-ddC), a beta-L-nucleoside analog derived from 2',3'-dideoxycytidine (ddC), in the duck HBV (DHBV) model. This compound was previously shown to inhibit HBV DNA synthesis in a stably transfected hepatoma cell line (F2215). Using a cell-free system for the expression of an enzymatically active DHBV polymerase, we could demonstrate that the triphosphate form of beta-L-F-ddC does inhibit hepadnavirus reverse transcription. In primary duck hepatocyte culture, beta-L-F-ddC showed a potent inhibitory effect on DHBV DNA synthesis which was concentration dependent. Although beta-L-F-ddC was shown to be less active than ddC against the DHBV reverse transcriptase in vitro, beta-L-F-ddC was a stronger inhibitor in hepatocytes. The oral administration of beta-L-F-ddC in experimentally infected ducklings showed that beta-L-F-ddC is a potent inhibitor of viral replication in vivo. Short-term therapy could not prevent a rebound of viral replication after the drug was withdrawn. Preventive therapy with beta-L-F-ddC could delay the onset of viremia by only 1 day compared with the time to the onset of viremia in the control group. The in vivo inhibitory effect of beta-L-F-ddC was much stronger than that of ddC and was not associated with signs of toxicity. Our data show that beta-L-F-ddC inhibits hepadnavirus reverse transcription and is a strong inhibitor of viral replication both in vitro and in vivo.
    [Abstract] [Full Text] [Related] [New Search]