These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Separate effects of long-chain phosphatidylcholines on dephosphorylation of the Ca(2+)-ATPase and on Ca2+ binding.
    Author: Starling AP, East JM, Lee AG.
    Journal: Biochem J; 1996 Sep 15; 318 ( Pt 3)(Pt 3):785-8. PubMed ID: 8836120.
    Abstract:
    The steady-state activity of the Ca(2+)-ATPase of skeletal muscle sarcoplasmic reticulum (SR) is low when reconstituted into bilayers of the long-chain phosphatidylcholines dierucyl phosphatidylcholine [di(C22:1)PC] or dinervonyl phosphatidylcholine [di(C24:1)PC]. In di(C24:1)PC the ATPase binds a single Ca2+ ion, whereas in di(C22:1)PC it binds two, as in the native SR [Starling, East and Lee (1993) Biochemistry 32, 1593-1600]. In di(C22:1)PC, rates of phosphorylation of the ATPase by ATP and the rate of ATP-induced Ca2+ dissociation are slightly lower than in the native ATPase. However, a much more marked decrease is observed in di(C22:1)PC in the rate of dephosphorylation of the phosphorylated ATPase, which explains the low steady-state ATPase activity. The level of phosphorylation of the ATPase by Pi was little affected by reconstitution in di(C22:1)PC, suggesting that the rate of phosphorylation by Pi is also decreased. The very similar effects of di(C22:1)PC and di(C24:1)PC (Starling, East and Lee (1995) Biochem. J. 310, 875-879) on phosphorylation and dephosphorylation suggest that changes in these steps and the change in Ca2+ binding stoichiometry observed in di(C24:1)PC represent independent changes on the ATPase.
    [Abstract] [Full Text] [Related] [New Search]