These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: High rates of extracellular superoxide generation by cultured human fibroblasts: involvement of a lipid-metabolizing enzyme. Author: O'Donnell VB, Azzi A. Journal: Biochem J; 1996 Sep 15; 318 ( Pt 3)(Pt 3):805-12. PubMed ID: 8836123. Abstract: Expression of NADPH oxidase and low superoxide generation (approx. 0.06 nmol/min per 10(6) cells) by cytokine- or ionophore-stimulated human fibroblasts is known. However, we here show that these cells also contain an ectoplasmic enzyme, distinct from NADPH oxidase, which can generate superoxide (2.19 +/- 0.14 nmol/min per 10(6) cells) at levels similar to phorbol ester-stimulated monocytes on exogenous NADH addition. Superoxide generation was temperature-dependent, insensitive to chelation (desferal), and had a K(m) (app)(NADH) of 11.5 microM. Inhibitor studies showed that there was no involvement of NADPH oxidase (diphenylene iodonium, diphenyl iodonium), prostaglandin H synthase (indomethacin), xanthine oxidase (allopurinol), cytochrome P-450 (metyrapone) or mitochondrial respiration (rotenone, antimycin A). NAD+ was a competitive inhibitor, whereas NADPH supported 40% of the rate seen with NADH. No luminescence was observed after the addition of lactate, malate, pyruvate, GSH or L-cysteine. NADH-stimulated superoxide generation was enhanced by the addition of (3-30 microM) arachidonic acid, linoleic acid or (5S)-hydroxyeicosatetraenoic acid [(5S)-HETE] but not palmitic acid, (15S)-hydroperoxyeicosatetraenoic acid [(15S)-HPETE], (15S)-HETE or (12S)-HETE. Several features suggest involvement of an enzyme related to 15-lipoxygenase, and, in support of this, we show superoxide generation and NADH oxidation by recombinant rabbit reticulocyte 15-lipoxygenase. The large amounts of superoxide measured suggest that the fibroblast extracellular enzyme could be a major source of reactive oxygen species after tissue damage.[Abstract] [Full Text] [Related] [New Search]