These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Reconstitution of a pentameric complex of dimeric transforming growth factor beta ligand and a type I, II, III receptor in baculoviral-infected insect cells. Author: Matsuzaki K, Kan M, McKeehan WL. Journal: In Vitro Cell Dev Biol Anim; 1996 Jun; 32(6):345-60. PubMed ID: 8842749. Abstract: Two transmembrane serine-threonine kinases (type I and II receptors), a membrane-anchored proteoglycan (type III), and a homodimeric ligand participate in the transforming growth factor beta type one (TGF beta 1) signal transduction complex. The expression of recombinant receptors in insect cells co-infected with up to three recombinant baculoviruses was employed to study interactions among the ectodomains of the three types of receptors and the TGF beta 1 ligand in absence of uncontrollable extrinsic factors in mammalian cells. Multi-subunit complexes were assembled in intact cells and purified on glutathione-conjugated beads for analysis by tagging one of the subunits with glutathione S-transferase (GST). Intrinsic ligand-independent interactions were observed among receptor subunits as follows: type III-III, type I-I, type III-I, and type II-I. The homeotypic complex of type II-II receptors and the heterotypic type III-II interaction was ligand dependent. The type I, but not the type III, subunit displaced about 50% of the type II component in either ligand-dependent homomeric type II-type II complexes or heteromeric type III-type II complexes to form type II-I or type III-II-I oligomers, respectively. The type II subunit displaced type I subunits in oligomers of the type I subunit. Specificity of type I receptors may result from differential affinity for the type II receptor rather than specificity for ligand. A monomeric subunit of the TGF beta 1 ligand bound concurrently to type III and type II or type III and type I receptors, but failed to concurrently bind to the type II and type I subunits. The binding of TGF beta 1 to the type I kinase subunit appears to require an intact disulfide-linked ligand dimer in the absence of a type III subunit. The combined results suggest a pentameric TGF beta signal transduction complex in which one unit each of the type III, type II, and type I components is assembled around the two subunits of the dimeric TGF beta ligand. An immobilized GST-tagged subunit of the receptor complex was utilized to assemble multi-subunit complexes in vitro and to study the phosphorylation events among subunits in the absence of extrinsic cell-derived kinases. The results revealed that (a) a low level of ligand-independent autophosphorylation occurs in the type I kinase; (b) a high level of autophosphorylation occurs in the type II kinase; (c) both the type III and type I subunits are trans-phosphorylated by the type II subunit; and (d) the presence of both type I and II kinases complexed with the type III subunit and dimeric TGF beta 1 ligand in a pentameric complex causes maximum phosphorylation of all three receptor subunits.[Abstract] [Full Text] [Related] [New Search]