These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Ca2+ influx into leech neuropile glial cells mediated by nicotinic acetylcholine receptors.
    Author: Hochstrate P, Schlue WR.
    Journal: Glia; 1995 Sep; 15(1):43-53. PubMed ID: 8847100.
    Abstract:
    The effect of cholinergic agonists and antagonists on the intracellular free Ca2+ concentration ([Ca2+]i) of leech neuropile glial cells was investigated by use of iontophoretically injected fura-2. In neuropile glial cells, cholinergic agonists induced a marked increase in [Ca2+]i that was inhibited by d-tubocurarine, alpha-bungarotoxin, strychnine, and atropine. The efficacy of the various agonists and antagonists indicates that the [Ca2+]i increase is mediated by the nicotinic acetylcholine (ACh) receptors that have been characterized previously in these cells by using electrophysiological methods. In the presence of high agonist concentrations, [Ca2+]i partly recovered, suggesting that the ACh receptors desensitize. The [Ca2+]i increase induced by cholinergic agonists was abolished in Ca2(+)-free solution, which indicates that it is caused by Ca2+ influx from the external medium. The agonist-induced [Ca2+]i increase was partly preserved in Na(+)-free solution, whereas the agonist-induced membrane depolarization was strongly suppressed. The agonist-induced [Ca2+]i increase was also partly preserved in the presence of 5 mM Ni2+, which almost abolished the K(+)-induced [Ca2+]i increase mediated by voltage-dependent Ca2+ channels. It is concluded that at low agonist concentrations the [Ca2+]i increase in leech neuropile glial cells is mediated exclusively by the ion channels associated with the nicotinic ACh receptors. At high agonist concentrations, voltage-dependent [Ca2+]i increase in leech neuropile glial cells is mediated exclusively by the ion channels associated with the nicotinic ACh receptors. At high agonist concentrations, voltage-dependent Ca2+ channels activated by the concomitant membrane depolarization also contribute to the agonist-induced Ca2+ influx.
    [Abstract] [Full Text] [Related] [New Search]