These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Major difference between rat and guinea-pig ureter in the ability of agonists and caffeine to release Ca2+ and influence force.
    Author: Burdyga TV, Taggart MJ, Wray S.
    Journal: J Physiol; 1995 Dec 01; 489 ( Pt 2)(Pt 2):327-35. PubMed ID: 8847629.
    Abstract:
    1. We have investigated the internal Ca2+ store and its ability to affect contraction by simultaneously measuring force and Ca2+ in the ureter from guinea-pig and rat. Both species responded in a similar manner to electrical stimulation and depolarization with high-K+, generating plateau-type action potentials and increasing intracellular calcium ([Ca2+]i) and force. 2. In the guinea-pig, carbachol had no effect on [Ca2+]i and force in the resting ureter. In contrast, resting rat ureter always responded with a large [Ca2+]i rise and maintained force to carbachol in Ca(2+)-containing solution, and in Ca(2+)-free solution it showed a transient increase in [Ca2+]i and force. This Ca2+ release and force development was also present in both polarized and high-K(+)-depolarized preparations and was insensitive to nifedipine, suggesting the presence of a receptor-coupled pathway of Ca2+ release in rat ureter. 3. Caffeine was able to produce a release of Ca2+ from the internal store of guinea-pig ureter and elicit contraction. However, rat ureter failed to respond to caffeine. In the presence of La3+, the caffeine response in the guinea-pig ureter and carbachol response in the rat ureter, elicited in Ca(2+)-free solutions, were always increased and prolonged and could be repeatedly evoked, suggesting similarity in Ca2+ uptake behaviour of the store in both species. 4. Ryanodine blocked the caffeine responses of the guinea-pig ureter elicited both in Ca(2+)-containing and Ca(2+)-free solutions, both in the absence and presence of La3+. However, ryanodine failed to prevent the rat ureter responding to carbachol, suggesting that carbachol was releasing Ca2+ from a ryanodine-insensitive channel in the sarcoplasmic reticulum (SR). 5. Cyclopiazonic acid, which inhibits the SR Ca(2+)-ATPase, abolished the effects of both caffeine and carbachol in Ca(2+)-free solutions in guinea-pig and rat, respectively. 6. We conclude that there is a major difference in the mechanisms of Ca2+ release in the internal Ca2+ store of smooth muscle from guinea-pig and rat ureter. The data suggest that the guinea-pig store is purely a calcium-induced calcium release (CICR)-type store and that the rat store is a pure receptor-operated Ca2+ store.
    [Abstract] [Full Text] [Related] [New Search]