These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Long-term effects of gestational protein malnutrition on postnatal growth, insulin-like growth factor (IGF)-I, and IGF-binding proteins in rat progeny.
    Author: Muaku SM, Beauloye V, Thissen JP, Underwood LE, Fossion C, Gérard G, Ketelslegers JM, Maiter D.
    Journal: Pediatr Res; 1996 Apr; 39(4 Pt 1):649-55. PubMed ID: 8848340.
    Abstract:
    We examined the long-term effects of dietary protein restriction during rat pregnancy on serum IGF-I, serum IGF binding proteins, and liver IGF-I gene expression during postnatal development. Pregnant Wistar rats were fed ad libitum throughout gestation a normal (20% casein diet; P20 controls) or a low (5% casein; P5) protein diet. At birth, the pups from both P20 and P5 dams were cross-fostered to well nourished lactating dams, and litters (n = 5/dietary group) were reduced in size to 6 pups. After weaning (d 22), the pups were fed the control diet ad libitum. The pups were killed at 8, 22, and 63 d of age. Gestational protein restriction caused significant growth retardation and mortality in newborn pups. Despite food rehabilitation during the suckling period (d 0-22), body weight, tail length, and the weight of liver, heart, kidney, and brain in the P5 pups remained significantly reduced at 8 and 22 d (-17 to -35%) compared with control pups. At the same time, serum and liver IGF-I concentrations in the P5 pups (on d 8: 100 +/- 9 ng/mL and 11 +/- 1 ng/g, respectively; on d 22: 340 +/- 20 ng/mL and 42 +/- 3 ng/g) were lower than in age-matched controls (on d 8: 170 +/- 12 ng/mL and 26 +/- 2 ng/g; on d 22: 470 +/- 30 ng/mL and 73 +/- 5 ng/g), although liver IGF-I mRNA abundance was not affected. After long-term food rehabilitation (d 63), tail length and organ weight recovered, and serum and liver IGF-I concentrations were normalized. However, although the P5 rats had resumed a normal growth rate, their body weight remained lower than in the controls. There were no differences in serum IGF binding proteins 1-4, insulin, and GH concentrations between the groups at any age studied. These results suggest that reduction in serum IGF-I may contribute to the reduced somatic and organ growth observed in rats after gestational protein malnutrition, and further support a role for IGF-I in the control of catch-up growth.
    [Abstract] [Full Text] [Related] [New Search]