These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evaluation by dot-immunoassay of the differential distribution of cell surface and intracellular proteins in glycosylphosphatidylinositol-rich plasma membrane domains. Author: Ilangumaran S, Arni S, Chicheportiche Y, Briol A, Hoessli DC. Journal: Anal Biochem; 1996 Mar 01; 235(1):49-56. PubMed ID: 8850546. Abstract: The dot-immunoassay has been adapted for rapid detection and partial characterization of glycosylphosphatidylinositol (GPI)-linked, transmembrane, and intracellular proteins in Triton X-100 (TX-100) extracts of lymphoma cells and intestinal tissue. The GPI-anchored proteins tend to concentrate into specialized plasma membrane domains enriched in glycosphingolipids. The dot-immunoassay has been successfully used to demonstrate the differential distribution of GPI-linked and transmembrane surface glycoproteins of T lymphocytes in sucrose density gradient fractions of TX-100 lysate. The type II transmembrane protein CD26 and the intracellular tyrosine kinase p56lck partially cofractionated with GPI-linked glycoproteins, and the extent to which they partition into GPI-rich plasma membrane domains could be evaluated. Preferential association of the acidic glycosphingolipid GM1 with these domains could be demonstrated by cholera toxin binding directly to the dot-blotted sucrose density gradient fractions. Treatment of whole cell TX-100 lysates or sucrose gradient fractions dotted onto nitrocellulose filter strips with bacterial phosphatidylinositol-specific phospholipase C (PI-PLC) proved to be an efficient method to assay for the presence of a GPI-anchor in Thy-1 and Ly6 surface glycoproteins. We have used three criteria, namely flotation to light density fractions in sucrose gradients, colocalization with GM1, and sensitivity to PI-PLC cleavage, to assess the presence of a GPI modification in a putative GPI-linked protein in intestinal tissue extract. It is envisaged that the techniques described in this report would find a wider application to rapidly assess the contents of GPI-rich plasma membrane domains in different cells and tissues.[Abstract] [Full Text] [Related] [New Search]