These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Oxidative damage and antioxidants in Rana sylvatica, the freeze-tolerant wood frog.
    Author: Joanisse DR, Storey KB.
    Journal: Am J Physiol; 1996 Sep; 271(3 Pt 2):R545-53. PubMed ID: 8853374.
    Abstract:
    Freeze-tolerant wood frogs (Rana sylvatica) must endure prolonged ischemia on freezing. Reperfusion on thawing brings with it the potential or oxidative damage due to reactive oxygen species formation, a well-known consequence of mammalian ischemia-reperfusion. To determine whether oxidative damage occurs during thawing and how frogs deal with this, we examined oxidative damage and antioxidant and prooxidant systems in tissues of Rana sylvatica and a nonfreezing relative, Rana pipiens. Glutathione status indicated little oxidative stress in tissues during freezing or thawing; an increase of the glutathione pool in the oxidized form was observed during freezing only in Rana sylvatica kidney (by 85%) and brain (by 33%). Oxidative damage to tissue lipids, measured as the levels of thiobarbituric acid-reactive substances and/or by an Fe(III)-xylenol orange assay, did not increase above control values pver a freeze-thaw time course. Correlative data showing increased activities of some antioxidant enzymes during freezing, notably glutathione peroxidase (increasing 1.2- to 2.5-fold), as well as constitutively higher activities of antioxidant enzymes and higher levels of glutathione in the freeze-tolerant species compared with Rana pipiens, suggest that antioxidant defenses play a key role in amphibian freeze tolerance.
    [Abstract] [Full Text] [Related] [New Search]