These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Experimental verification of the secondary structures of guide RNA-pre-mRNA chimaeric molecules in Trypanosoma brucei.
    Author: Schmid B, Read LK, Stuart K, Göringer HU.
    Journal: Eur J Biochem; 1996 Sep 15; 240(3):721-31. PubMed ID: 8856076.
    Abstract:
    RNA editing in kinetoplastid organisms is an RNA-processing reaction that adds and deletes U nucleotides at specific sites in mitochondrial pre-mRNAs. The edited sequence is specified by guide RNAs and the processing presumably occurs within a high-molecular-mass ribonucleoprotein complex containing several enzymatic activities. Although the mechanism is not currently known, potential intermediates or by-products of the editing process are chimaeric RNAs where guide (g) RNAs are covalently attached, via their non-encoded U-tail, to their cognate pre-mRNAs. We determined the secondary structures of three different ATPase 6 chimaeras of Trypanosoma brucei using a set of structure-sensitive chemical and enzymatic probes. The experiments revealed a bipartite domain structure consisting of a gRNA/pre-mRNA interaction hairpin and an independently folding mRNA stem/loop in all three RNAs. The connecting U-tail was a determinant for the length of the interaction stems with the oligo(U) nucleotides base pairing to internal gRNA sequences. The probed structures have calculated delta G27o values of -92 kJ/ mol to -134 kJ/mol, somewhat less stable than the predicted minimal free energy structures and support previously proposed models for the interaction between gRNAs and pre-mRNAs. Optical melting studies indicated additional, higher order structural features for all three molecules with four defined melting transition between 10 degrees C and 90 degrees C. A comparison of CD spectra in the absence and presence of mitochondrial protein extracts demonstrated no gross structural changes of the RNA structures induced by the association with polypeptides.
    [Abstract] [Full Text] [Related] [New Search]