These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Persisting in vitro actin motility at nanomolar adenosine triphosphate levels: comparison of skeletal and cardiac myosins. Author: Kellermayer MS, Hinds TR, Pollack GH. Journal: Physiol Chem Phys Med NMR; 1995; 27(3):167-78. PubMed ID: 8868577. Abstract: We have previously demonstrated in vitro actin movement at nanomolar adenosine triphosphate (ATP) levels using heavy meromyosin from skeletal muscle. In the present work we tested whether the motility at nonomolar ATP-concentrations could be supported by cardiac myosin as well. Actomyosin (skeletal actin and bovine ventricular myosin) was pretreated in the in vitro motility assay with 1 mM ATP; subsequently, the ATP level was reduced by multiple rigor-solution washes. By the final rigor-solution wash, the ATP concentration, monitored by the luciferin-luciferase assay, dropped to the order of 100 nM. Even at this low ATP level actin-filament movement remained in evidence. This was in marked contrast to the situation where ATP concentration was gradually increased from zero; in the latter, filament movement began only as ATP levels exceeded 1-2 microM. The difference indicates that potential energy is stored during the initial ATP treatment, and utilized later as the free ATP falls below micromolar levels. Although the velocity of cardiac myosin-supported movement was only one fourth of that of skeletal myosin, both myosins supported actin movement down to similar ATP concentrations. The similarity in response of the two myosins to ATP implies a similar degree of potential energy storage. Given the significantly different specific ATPase activities, however, it appears that the mechanism of potential energy storage and release involves factors different from those involved in the release of chemical energy by the myosin ATPase.[Abstract] [Full Text] [Related] [New Search]