These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Regulation of protein tyrosine phosphatase 1C: opposing effects of the two src homology 2 domains. Author: Pregel MJ, Shen SH, Storer AC. Journal: Protein Eng; 1995 Dec; 8(12):1309-16. PubMed ID: 8869644. Abstract: The regulatory roles of the two src homology 2 (SH2) domains of protein tyrosine phosphatase 1C were investigated by comparing recombinant full-length PTP1C with mutants in which either the N-terminal SH2 (N-SH2) domain (PTP1C delta NSH2), the C-terminal SH2 (C-SH2) domain (PTP1C delta CSH2) or both SH2 domains were deleted (PTP1C delta NSH2 delta CSH2). This revealed that the SH2 domains have opposing and independent effects on activity: strong inhibition by N-SH2 (42-fold) and weak activation by C-SH2 (2.1-fold). C-SH2 caused activation across a wide pH range while N-SH2 inhibited most at neutral and high pH through a shift of the basic limb of the pH profile of kcat/Km, apparently via perturbation of an active-site pKa value. A phosphotyrosyl peptide derived from the erythropoietin receptor caused an approximately 30-fold activation of PTP1C and PTP1C delta CSH2 but had no effect on PTP1C delta NSH2 or PTP1C delta NSH2 delta CSH2, indicating that binding of this peptide to N-SH2 abolished its inhibition. Since C-SH2 separates N-SH2 from the catalytic domain in full-length PTP1C and activation is observed for PTP1C delta CSH2, it appears that the inhibitory effect of N-SH2 is independent of the position in the sequence and that intermolecular interactions may also be possible.[Abstract] [Full Text] [Related] [New Search]