These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Central modulation of stretch receptor neurons during fictive locomotion in lamprey. Author: Vinay L, Barthe JY, Grillner S. Journal: J Neurophysiol; 1996 Aug; 76(2):1224-35. PubMed ID: 8871232. Abstract: 1. In lamprey, stretch receptor neurons (SRNs), also referred to as edge cells, are located along the lateral margin of the spinal cord. They sense the lateral movements occurring in each swim cycle during locomotion. The isolated lamprey spinal cord in vitro was used to investigate the activity of SRNs during fictive locomotion induced by bath-applied N-methyl-D-aspartate (NMDA). Intracellular recordings with potassium acetate filled electrodes showed that 63% of SRNs had a clear locomotor-related modulation of their membrane potential. 2. Of the modulated SRNs, two-thirds had periods of alternating excitation and inhibition occurring during the ipsilateral and the contralateral ventral root bursts, respectively. The phasic hyperpolarization could be reversed into a depolarizing phase after the injection of chloride ions into the cells; this revealed a chloride-dependent synaptic drive. The remaining modulated SRNs were inhibited phasically during ipsilateral motor activity. 3. Experiments with barriers partitioning the recording chamber with the spinal cord into three pools, allowed an inactivation of the locomotor networks within one pool by washing out NMDA from the pool in which the SRN was recorded. This resulted in a marked reduction, but not an abolishment, of the amplitude of the membrane potential oscillations. Both the excitatory and the inhibitory phases were reduced, resulting from removal of input from inhibitory and excitatory interneurons projecting from the adjacent pools. If the glycine receptor antagonist strychnine (1 microM) was applied in one pool, the phasic hyperpolarizing phase disappeared without affecting the excitatory phase. 4. Bath application of the gamma-aminobutyric acid (GABA)A receptor antagonist, bicuculline (50-100 microM) blocked the spontaneous large unitary inhibitory postsynaptic potentials, which occurred without a clear phasic pattern. Bicuculline had no significant effect on the peak to peak amplitude of the locomotor-related membrane potential oscillations. The inhibition in SRNs therefore has a dual origin: glycinergic interneurons provide phasic inhibition, while the GABA system can exert a tonic inhibition via GABAA receptors. 5. These data show that, in addition to the stretch-evoked excitation, which SRNs receive during each locomotor cycle, most of them also receive excitation from the central pattern generator network during the ipsilateral contraction, which may ensure a maintained high level of sensitivity to stretch during the shortening phase of the locomotor cycle. This arrangement is analogous to the efferent control of muscle spindles exerted by gamma-motoneurons in mammals, which as a rule are coactivated with alpha-motoneurons to the same muscle (alpha-gamma linkage).[Abstract] [Full Text] [Related] [New Search]