These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The structural requirements for phorbol esters to enhance noradrenaline and dopamine release from rat brain cortex. Author: Kotsonis P, Majewski H. Journal: Br J Pharmacol; 1996 Sep; 119(1):115-25. PubMed ID: 8872364. Abstract: 1. The effects of various protein kinase C (PKC) activators on the stimulation-induced (S-I) release of noradrenaline and dopamine was studied in rat cortical slices pre-incubated with [3H]-noradrenaline or [3H]-dopamine. The aim was to investigate a possible structure-activity relationship for these agents on transmitter release. 2. 4 beta-Phorbol 12,13-dibutyrate (4 beta PDB, 0.1-3.0 microM), enhanced S-I noradrenaline and dopamine release in a concentration-dependent manner whereas the structurally related inactive isomer 4 alpha-phorbol 12, 13-dibutyrate (4 alpha PDB, 0.1-3.0 microM) and phorbol 13-acetate (PA, 0.1-3.0microM) were without effect on noradrednaline release. Another group of phorbol 12, 13-diesters containing a common 13-ester substituent (phorbol 12, 13-diacetate, PDA, 0.1-3.0 microM; phorbol 12-myristate 13-acetate, PMA, 0.1-3.0 microM; phorbol 12-methylaminobenzoate 13-acetate, PMBA, 0.03-3.0 microM) also enhanced S-I noradrenaline and dopamine release in a concentration-dependent manner with PMA being the least potent. 3. The 12-deoxyphorbol 13-substituted monoesters, 12-deoxyphorbol 13-acetate (dPA, 0.1-3.0 microM), 12-deoxyphorbol 13-angelate (dPAng, 0.1-3.0 microM), 12-deoxyphorbol 13-isobutyrate (dPiB, 0.03-3.0 microM) and 12-deoxyphorbol 13-phenylacetate (dPPhen, 0.1-3.0 microM) enhanced S-I noradrenaline and dopamine release in a concentration-dependent manner. In contrast, 12-deoxyphorbol 13-tetradecanoate (dPT, 0.1-3.0 microM) was without effect. 4. The involvement of PKC in mediating the effects of the various phorbol esters was further investigated. PKC was down-regulated by 20 h exposure of the cortical slices to 4 beta-phorbol 12,13-dibutyrate (1 microM). In this case the facilitatory effect of 4 beta PDB and dPA was abolished whilst that of dPAng was significantly attenuated. This indicates that these agents were acting selectively at PKC. In support of this the PKC inhibitors, polymyxin B (21 microM) and bisindolylmaleimide I (3 microM), attenuated the facilitatory effect of 4 beta PDB and dPAng although that of dPA was not significantly altered. 5. The effects of these agents on transmitter release were not correlated with their in vitro affinity and isozyme selectivity for PKC. Short chain substituted mono- and diesters of phorbol were more potent enhancers of action-potential evoked noradrenaline and dopamine release than the long chain esters. Interestingly, these former agents are the least potent or non effective (e.g. dPA, PDA) tumour promoters. We suggest that the reason for the poor effects of lipophilic long chain phorbol esters (PMA, dPT) on transmitter release is that they are sequestered in the plasmalemma and do not access the cell cytoplasm where the PKC may be located.[Abstract] [Full Text] [Related] [New Search]