These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Oxalate transport and calcium oxalate renal stone disease. Author: Verkoelen CF, Romijn JC. Journal: Urol Res; 1996; 24(4):183-91. PubMed ID: 8873376. Abstract: Hyperoxaluria is considered to play a crucial role in calcium oxalate (CaOx) renal stone disease. The amount of oxalate excreted into the urine depends on intestinal absorption, endogenous production, renal clearance and renal tubular transport. Since a primary disorder has not been found so far in most CaOx stone formers and since oxalate is freely filtered at the glomerulus, most studies are presently focussed on alterations in epithelial oxalate transport pathways. Oxalate can be transported across an epithelium by the paracellular (passive) and transcellular (active) pathway. Oxalate transport across cellular membranes is mediated by anion-exchange transport proteins. A defect in the structure of these transport proteins could explain augmented transcellular oxalate transport. Little is known about the physiological regulation of oxalate transport. In this review cellular transport systems for oxalate will be summarized with special attention for the progress that has been made to study oxalate transport in a model of cultured renal tubule cells. Better understanding of the physiological processes that are involved in oxalate transport could yield information on the basis of which it might be possible to design new approaches for an effective treatment of CaOx stone disease.[Abstract] [Full Text] [Related] [New Search]