These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The enzymatic hydrolysis of 6-acylamino-4-methylumbelliferyl-beta-D-glucosides: identification of a novel human acid beta-glucosidase.
    Author: Mikhaylova M, Wiederschain G, Mikhaylov V, Aerts JM.
    Journal: Biochim Biophys Acta; 1996 Oct 07; 1317(1):71-9. PubMed ID: 8876629.
    Abstract:
    Fluorogenic 6-acylamino-4-methylumbelliferyl-beta-D-glucosides were found to be poor substrates for the three known human beta-glucosidases, i.e., lysosomal and non-lysosomal glucocerebrosidases and cytosolic broad-specificity beta-glucosidase. However, homogenates of human tissues and human cell types showed significant enzymatic hydrolysis of 6-ethanoylamino-4-methylumbelliferyl-beta-D-glucoside (EMGlc) due to the activity of a hitherto undescribed beta-glucosidase, called here EMGlc-ase. It was shown that the isozyme is hardly active towards 4-methylumbelliferyl-beta-D-glucoside or glucosylceramide. EMGlc-ase exhibits maximal activity at pH 4.5 and 5.0 in the absence and presence of sodium taurocholate respectively. It is a soluble lysosomal enzyme with a discrete isoelectric point of about 5.0. EMGlc-ase is not inhibited by conduritol B-epoxide, is activated by sodium taurocholate and binds strongly to Concanavalin A. This enzyme is not deficient in relation to Gaucher disease.
    [Abstract] [Full Text] [Related] [New Search]