These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Influence of ingesting a solution of branched-chain amino acids on plasma and muscle concentrations of amino acids during prolonged submaximal exercise. Author: Blomstrand E, Ek S, Newsholme EA. Journal: Nutrition; 1996; 12(7-8):485-90. PubMed ID: 8878139. Abstract: On two occasions, seven male endurance-trained cyclists performed sustained exhaustive exercise with reduced muscle glycogen stores. During exercise, the subjects were supplied in random order with an aqueous solution of branched-chain amino acids (BCAA) or flavored water (placebo). Ingestion of BCAA caused the concentration of these amino acids to increase by 135% in the plasma and by 57% in muscle tissue during exercise, whereas in the placebo trial there was no change or a slight decrease in the concentration in plasma and a decrease of 18% in the muscle. The plasma concentration of alanine increased by 48% during exercise when BCAA were ingested, and the increase in the muscle concentration of alanine during exercise was larger (70% versus 31% in the placebo trial), suggesting an increased rate of alanine production. Also, the plasma concentration of arginine increased by 14% during exercise when BCAA were ingested, whereas there was no change during exercise in the placebo trial. There was a smaller decrease in the muscle glutamate concentration during exercise in the BCAA trial (32% versus 47% in the placebo trial; p < 0.05), but, for the remaining amino acids, there was no difference between the BCAA and placebo trials. There was a significant decrease in the muscle glycogen concentration during exercise in the placebo trial, whereas only a small decrease was found in the BCAA trial (28 and 9 mmol/kg wet wt [p < 0.05] in the placebo and BCAA trial, respectively). This might indicate that an increased supply of BCAA has a sparing effect on muscle glycogen degradation during exercise.[Abstract] [Full Text] [Related] [New Search]