These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The diadenosine polyphosphate receptors: P2D purinoceptors. Author: Miras-Portugal MT, Castro E, Mateo J, Pintor J. Journal: Ciba Found Symp; 1996; 198():35-47; discussion 48-52. PubMed ID: 8879817. Abstract: Diadenosine polyphosphates-Ap4A, Ap5A and Ap6A-are co-stored in neurosecretory vesicles together with ATP and aminergic compounds. They are released from neural cells and synaptic terminals in a Ca(2+)-dependent process. Ligand binding and displacement experiments carried out with [3H]Ap4A on isolated chromaffin cells and synaptosomal preparations result in curvilinear Scatchard plots with Kd values close to 0.1 nM for the high-affinity binding sites. Displacement curves with two steps are obtained for homologous and heterologous nucleotide ligands; the lowest-affinity step exhibits Ki values in the micromolar range for ApnA compounds. The high-affinity binding sites were named P2D purinoceptors on the basis of their binding characteristics. Single-cell studies in neurochromaffin cells indicate the presence of P2X purinoceptors in noradrenergic cells that do not respond to Ap4A and in which noradrenaline secretion can be induced by influx of extracellular Ca2+. P2Y receptors that respond to ATP analogues and ApnAs are present in endothelial cells from adrenal medulla. Those cells that express P2U purinoceptors are unresponsive to ApnAs. Ectodiadenosine polyphosphate hydrolases with Km values of 0.3 to 2 microM are present in both neural and endothelial cells from adrenal medulla. In midbrain synaptic terminals diadenosine polyphosphates induce Ca2+ entry from the extracellular medium. The fact that the synaptic response is not cross-desensitized by ATP and its non-hydrolysable analogues, the non-blocking effect of suramin, and the differential effect of Ca2+ channel blockers, together suggest that there are different receptors for nucleotides and dinucleotides in rat brain synaptosomes, which we have called P4 purinoceptors on the basis of functional studies.[Abstract] [Full Text] [Related] [New Search]