These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Why don't ruminal bacteria digest cellulose faster?
    Author: Weimer PJ.
    Journal: J Dairy Sci; 1996 Aug; 79(8):1496-502. PubMed ID: 8880475.
    Abstract:
    The bacteria Fibrobacter succinogenes, Ruminococcus flavefaciens, and Ruminococcus albus generally are regarded as the predominant cellulolytic microbes in the rumen. Comparison of available data from the literature reveals that these bacteria are the most actively cellulolytic of all mesophilic organisms described to date from any habitat. In light of numerous proposals to improve microbial cellulose digestion in ruminants, it is instructive to examine the characteristics of these species that contribute to their superior cellulolytic capabilities and to identify the factors that prevent them from digesting cellulose even more rapidly. As a group, these species have extreme nutritional specialization. They are able to utilize cellulose (or in some cases xylan) and its hydrolytic products as their nearly sole energy sources for growth. Moreover, each species apparently has evolved to similar maximum rates of cellulose digestion (first-order rate constants of 0.05 to 0.08 h-1). Active cellulose digestion involves adherence of cells to the fibers via a glycoprotein glycocalyx, which protects cells from protozoal grazing and cellulolytic enzymes from degradation by ruminal proteases while it retains-at least temporarily-the cellodextrin products for use by the cellulolytic bacteria. These properties result in different ecological roles for the adherent and nonadherent populations of each species, but overall provide an enormous selective advantage to these cellulolytic bacteria in the ruminal environment. However, major constraints to cellulose digestion are caused by cell-wall structure of the plant (matrix interactions among wall biopolymers and low substrate surface area) and by limited penetration of the nonmotile cellulolytic microbes into the cell lumen. Because of these constraints and the highly adapted nature of cellulose digestion by the predominant cellulolytic bacteria in the rumen, transfer of cellulolytic capabilities to noncellulolytic ruminal bacteria (e.g., by genetic engineering) that display other desirable properties offers limited opportunities to improve ruminal digestion of cellulose.
    [Abstract] [Full Text] [Related] [New Search]