These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Redox cycling of human methaemoglobin by H2O2 yields persistent ferryl iron and protein based radicals.
    Author: Patel RP, Svistunenko DA, Darley-Usmar VM, Symons MC, Wilson MT.
    Journal: Free Radic Res; 1996 Aug; 25(2):117-23. PubMed ID: 8885329.
    Abstract:
    The formation and reactivity of ferryl haemoglobin (and myoglobin), which occurs on addition of H2O2, has been proposed as a mechanism contributing to oxidative stress associated with human diseases. However, relatively little is known of the reaction between hydrogen peroxide and human haemoglobin. We have studied the reaction between hydrogen peroxide and purified (catalase free) human metHbA. Addition of H2O2 resulted in production of both ferryl haem iron (detected by optical spectroscopy) and an associated protein radical (detected by EPR spectroscopy). Titrating metHbA with H2O2 showed that maximum ferryl levels could be obtained at a 1:1 stoichiometric ratio of haem to H2O2. No oxygen was evolved during the reaction, indicating that human metHbA does itself not possess catalytic activity. The protein radicals obtained in this reaction reached a steady state concentration, during hydrogen peroxide decomposition, but started to decay once the hydrogen peroxide had been completely exhausted. The presence of catalase, at concentrations around 10(4) fold lower than metHb, increased the apparent stoichiometry of the reaction to 1 mol metHb: approximately 20 mol H2O2 and abolished the protein radical steady state. The biological implications for these results are discussed.
    [Abstract] [Full Text] [Related] [New Search]